Понятие удельного электрического сопротивления медного проводника

К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:

Удельная проводимость и удельное сопротивление проводников.

Связь плотности тока J и напряженности электрического поля в проводнике дается дифференциальной формой закона Ома

где γ – удельная проводимость, которая в соответствии с законом Ома у металлических проводников не зависит от напряженности электрического поля Е при изменении последней в весьма широких пределах. Величина ρ = 1/γ, обратная удельной проводимости называется удельным сопротивлением, для проводника с сопротивление R длиной l с постоянным поперечным сечением S и вычисляется по формуле

Удельное сопротивление измеряется в Ом·м. Для измерения ρ проводниковых материалов разрешается пользоваться внесистемной единицей Ом·мм2/м.

Диапазон значений удельного сопротивления ρ металлических проводников (при нормальной температуре) довольно узок: от 0,016 для серебра и примерно до 10 мкОм·м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Удельная проводимость металлических проводников согласно классической теории металлов может быть выражена следующим образом

где е – заряд электрона; n0 – число свободных электронов в единице объема металла; λ – средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; m – масса электрона; vт – средняя скорость теплового движения свободного электрона в металле.

Преобразование данного выражения на основе положений квантовой механики приводит к формуле

где K – численный коэффициент.

Для различных металлов скорости хаотического теплового движения электронов vт примерно одинаковы. Незначительно различаются также и концентрации свободных электронов n0 (для меди и никеля это различие меньше 10%). Поэтому значение удельной проводимости γ (удельного сопротивления ρ) в основном зависит от средней длины свободного пробега электронов в данном проводнике λ,которая определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению ρ. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием около четверти длины электронной волны. Нарушения меньших размеров не вызывают заметного рассеяния волн. В металлическом проводнике, где длина волны электрона около 0,5 нм, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов, и, следовательно, приводит к росту ρ материала.

Температурный коэффициент удельного сопротивления металлов.

Число носителей заряда в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона λ, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рисунок 2.1)

Рисунок 2.1 – Зависимость удельного сопротивления ρ меди от температуры

Иными словами, температурный коэффициент удельного сопротивления металлов положителен

Согласно выводам электронной теории металлов значения αρ, чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту расширения идеальных газов, т.е. 1/273 = 0,0037 К-1. При изменении температуры в узких диапазонах на практике допустима кусочно-линейная аппроксимация зависимости ρ(Т). В этом случае принимают, что

где ρ1 и ρ2 – удельные сопротивления проводникового материала при температурах Т1, и T2, соответственно (при этом T2 > Т1); αρ – средний температурный коэффициент удельного сопротивления данного материала в диапазоне температур от Т1 до Т2.

Изменение удельного сопротивления металлов при плавлении.

При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления ρ, как это видно для меди (рисунка 2.1). Однако у некоторых металлов ρ при плавлении уменьшается. Удельное сопротивление увеличивается при плавлении у тех металлов, у которых при плавлении увеличивается объем, и, наоборот, у металлов, уменьшающих свой объем при плавлении, – галлия, висмута, сурьмы ρ уменьшается.

Удельное сопротивление сплавов.

Как уже указывалось, примеси и нарушения правильной структуры металлов увеличивают их удельное сопротивление. Значительное возрастание ρ наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, т. е. при утверждении совместно кристаллизуются, и атомы одного металла входят в кристаллическую решетку другого.

Теплопроводность металлов.

За передачу теплоты через металл ответственны свободные электроны, которые определяют электропроводность металлов и число которых в единице объема металла весьма велико. Поэтому коэффициент теплопроводности γт металлов намного больше, чем коэффициент теплопроводности диэлектриков. Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость у металла, тем больше должен быть и его коэффициент теплопроводности. Легко также видеть, что при повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость γ уменьшаются, отношение коэффициента теплопроводности металла к его удельной проводимости γт/γ должно возрастать. Математически это выражается законом Видемана–Франца–Лоренца

где Т – термодинамическая температура, К; L0 – число Лоренца, равное

Подставляя в формулу значения постоянной Больцмана k = 1,38·10-23 Дж/К и заряда электрона е = 1,6·10-19 Кл, получаем L0 = 2,45·10-8 B2K2.

Термоэлектродвижущая сила.

При соприкосновении двух различных металлических проводников между ними возникает контактная разность потенциалов. Причина появления этой разности потенциалов заключается в различии значений работы выхода электронов из различных металлов, а также в том, что концентрация электронов, а, следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна

где UA и UB – потенциалы соприкасающихся металлов; n0A и n0B – концентрации электронов в металлах А и В; k – постоянная Больцмана; e – абсолютная величина заряда электрона.

Если температуры «спаев» одинаковы, то сумма разности потенциалов в замкнутой цепи равна нулю. Иначе обстоит дело, когда один из спаев имеет температуру T1 , а другой – температуру Т2 (рисунок 2.2).

Рисунок 2.2 – Схема термопары

В этом случае между спаями возникает термо-ЭДС, равная

что можно записать в виде

где ψ – постоянный для данной пары проводников коэффициент термо-ЭДС, т. е. термо-ЭДС должна быть пропорциональна разности температур спаев.

Дата публикации: 26 марта 2013.
Категория: Электротехника
.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Алюминий
Вольфрам
Железо
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
0,016
0,0175
0,03
0,05
0,13
0,2
0,42
0,43
0,5
0,94
1,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Металл

α

Металл

α

Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (tt0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (tt0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 2019 – 560с.

6. Температурный коэффициент сопротивления

Температурный коэффициент сопротивления

Как вы могли заметить, значения удельных электрических сопротивлений в таблице из предыдущей статьи даны при температуре 20 ° Цельсия. Если вы предположили, что они могут измениться при изменении температуры, то оказались правы.

Зависимость сопротивления проводов от температуры, отличной от стандартной (составляющей обычно 20 градусов Цельсия), можно выразить через следующую формулу:

Константа «альфа» (α) известна как температурный коэффициент сопротивления, который равен относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу. Так как все материалы обладают определенным удельным сопротивлением (при температуре 20 ° С), их сопротивление  будет изменяться на определенную величину в зависимости от изменения температуры. Для чистых металлов температурный коэффициент сопротивления является положительным числом, что означает увеличение их сопротивления с ростом температуры. Для таких элементов, как углерод, кремний и германий, этот коэффициент является отрицательным числом, что означает уменьшение их сопротивления с ростом температуры. У некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, что означает крайне малое изменение их сопротивления при изменении температуры. В следующей таблице приведены значения температурных коэффициентов сопротивления нескольких распространенных типов металлов:

Проводник α, на градус Цельсия
Никель 0,005866
Железо 0,005671
Молибден 0,004579
Вольфрам 0,004403
Алюминий 0,004308
Медь 0,004041
Серебро 0,003819
Платина 0,003729
Золото 0,003715
Цинк 0,003847
Сталь (сплав) 0,003
Нихром (сплав) 0,00017
Нихром V (сплав) 0,00013
Манганин (сплав) 0,000015
Константан (сплав) 0,000074

Давайте на примере нижеприведенной схемы посмотрим, как температура может повлиять на сопротивление проводов и ее функционирование в целом:

Общее сопротивление проводов этой схемы (провод 1 + провод 2) при стандартной температуре 20 ° С  составляет 30 Ом. Проанализируем схему с помощью таблицы напряжений токов и сопротивлений:

При 20 ° С  мы получаем 12,5 В на нагрузке, и в общей сложности 1,5 В (0,75 + 0,75) падения напряжения на сопротивлении проводов. Если температуру поднять до 35 ° С, то при помощи вышеприведенной формулы мы легко сможем рассчитать изменение сопротивления на каждом из проводов. Для медных проводов (α = 0,004041) это изменение составит:

Пересчитав значения таблицы, мы можем увидеть к каким последствиям привело изменение температуры:

Сравнив эти таблицы можно прийти к выводу, что напряжение на нагрузке при увеличении температуры снизилось (с 12,5 до 12,42 вольт), а падение напряжения на проводах увеличилось (с 0,75 до 0,79 вольт). Изменения на первый взгляд незначительны, но они могут быть существенны для протяженных линий электропередач, связывающих электростанции и подстанции, подстанции и потребителей.