Устройство плавного пуска электродвигателя своими руками

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

  1. Плавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Электрические двигатели получили широкое применение в любых сферах деятельности человека. Однако при запуске электродвигателя происходит семикратное потребление тока, вызывающее не только перегрузку сети питания, но и нагрев обмоток статора, а также выход из строя механических частей. Для устранения этого нежелательного эффекта радиолюбители советуют применять устройства плавного пуска электродвигателя.

Плавный пуск двигателя

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют активная и реактивная составляющие сопротивления (R). Значение реактивной составляющей зависит от частотных характеристик питания и во время запуска колеблется в пределах от 0 до расчетного значения (при работе инструмента). Кроме того, изменяется ток, называемый пусковым.

Ток пуска превышает в 7 раз значение номинального. При этом процессе происходит нагрев обмоток статорной катушки и, в том случае, если провод, из которого состоит обмотка, является старым, то возможно межвитковое КЗ (при уменьшении величины R ток достигает максимального значения). Перегрев влечет снижение срока эксплуатации инструмента. Для предотвращения этой проблемы существуют несколько вариантов использования устройств плавного пуска.

Переключением обмоток устройство плавного пуска двигателя (УПП) состоит из следующих основных узлов: 2 вида реле (управление временем включения и нагрузкой) , трех контакторов (рисунок 1).

Рисунок 1 — Общая схема устройства плавного пуска асинхронных двигателей (мягкого пуска).

На рисунке 1 изображен асинхронный двигатель. Его обмотки соединены по типу подключения «звезда». Запуск осуществляется при замкнутых контакторах K1 и K3. Через определенный временной интервал (задается при помощи реле времени) контактор К3 размыкает свой контакт (происходит отключение) и происходит включение контактом К2. Схема на рисунке 1 применима и для УПП двигателей различного типа.

Главным недостатком считается образование токов КЗ при одновременном включении 2-х автоматов. Эта проблема исправляется внедрением в схему вместо контакторов рубильника. Однако обмотки статора продолжают греться.

При электронном регулировании частоты пуска электромотора используется принцип частотного изменения питающего напряжения. Основным элементом этих преобразователей является преобразователь частоты, включающий в себя:

  1. Выпрямитель собирается на полупроводниковых мощных диодах (возможен вариант тиристорного исполнения). Он преобразует величину сетевого напряжения в пульсирующий постоянный ток.
  2. Промежуточная цепь сглаживает помехи и пульсации.
  3. Инвертор необходим для преобразования сигнала, полученного на выходе промежуточной цепи, в сигнал переменной амплитудной и частотной характеристиками.
  4. Электронная схема управления генерирует сигналы для всех узлов преобразователя.

Принцип действия, виды и выбор

Во время увеличения вращающего момента ротора и Iп в 7 раз для продления срока службы необходимо использовать УПП, которое отвечает следующим требованиям:

  1. Равномерное и плавное увеличение всех показателей.
  2. Управление электроторможением и пуском двигателя в определенные временные интервалы.
  3. Защита от скачков напряжения, пропадании какой-либо фазы (для 3-х фазного электродвигателя) и помех различного рода.
  4. Повышение износостойкости.

Принцип действия симисторного УПП: ограничение величины напряжения благодаря изменению угла открытия симисторных полупроводников (симисторов) при подключении к статорным катушкам электродвигателя (рисунок 2).

Рисунок 2 — Схема плавного пуска электродвигателя на симисторах.

Благодаря применению симисторов появляется возможность снизить пусковые токи в 2 и более раз, а наличие контактора позволяет избежать перегрева симисторов (на рисунке 2: Bypass). Основные недостатки симисторных УПП:

  1. Применение простых схем возможно только при небольших нагрузках или холостом запуске. В противном случае схема усложняется.
  2. Происходит перегрев обмоток и полупроводниковых приборов при продолжительном запуске.
  3. Двигатель иногда не запускается (приводит к значительному перегреву обмоток).
  4. При электротормозе электромотора возможен перегрев обмоток.

Широко применяются УПП с регуляторами, в которых отсутствует обратная связь (по 1 или 3 фазам). В моделях этого типа необходимо устанавливать время пуска электромотора и напряжение непосредственно перед началом пуска. Недостаток устройств — невозможность регулировать вращающий момент подвижных механических частей по нагрузке. Для устранения этой проблемы нужно применить устройство по снижению Iп, защиты от различной разности фаз (возникает во время перекоса фаз) и механических перегрузок.

Более дорогостоящие модели УПП включают в себя возможность слежения за параметрами работы электродвигателя в непрерывном режиме.

В устройствах, содержащих электромоторы, предусмотрены УПП на симисторах. Они отличаются схемой и способом регуляции сетевого напряжения. Простейшие схемы — схемы с однофазным регулированием. Они исполняются на одном симисторе и позволяют смягчить нагрузки на механическую часть, и применяются для электромоторов с мощностью менее 12 кВ. На предприятиях применяется 3-х фазное регулирование напряжения для электромоторов мощностью до 260 кВт. При выборе вида УПП необходимо руководствоваться следующими параметрами:

  1. Мощность устройства.
  2. Режим работы.
  3. Равенство Iп двигателя и УПП.
  4. Количество запусков за определенное время.

Для защиты насосов подходят УПП, защищающие от ударов с гидравлической составляющей трубы (Advanced Control). УПП для инструментов выбираются, исходя из нагрузок и больших оборотов. В дорогих моделях этот тип защиты в виде УПП присутствует, а для бюджетных необходимо изготавливать его своими руками. Применяется в химических лабораториях для плавного запуска вентилятора, охлаждающего жидкости.

Причины применения в болгарке

Благодаря особенностям конструкции при старте угловой шлифовальной машинки происходят высокие динамические нагрузки на детали инструмента. При начальном вращении диска, ось редуктора подвержена действию сил инерции:

  1. Инерционный рывок может вырвать болгарку из рук. Происходит угроза жизни и здоровью, так как этот инструмент очень опасен и требует строгого соблюдения техники безопасности.
  2. При запуске происходит перегрузка по току (Iпуска = 7*Iном). Происходит преждевременный износ щеток, перегрев обмоток.
  3. Изнашивается редуктор.
  4. Разрушение режущего диска.

Ненастроенный инструмент становится очень опасным, ведь существует вероятность причинения вреда здоровью и жизни. Поэтому необходимо его обезопасить. Для этого и собираются УПП для электроинструмента своими руками.

Создание своими руками

Для бюджетных моделей угловой шлифовальной машинки и другого инструмента необходимо собрать свое УПП. Сделать это несложно, ведь благодаря интернету, можно найти огромное количество схем. Наиболее простая и, в то же время, эффективная — универсальная схема УПП на симисторе и микросхеме.

При включении болгарки или другого инструмента происходит повреждение обмоток и редуктора инструмента, связанного с резким запуском. Радиолюбители нашли выход из этой ситуации и предложили простой плавный пуск для электроинструмента своими руками (схема 1), собранную в отдельном блоке (в корпусе очень мало места).

Схема 1 — Схема плавного пуска электроинструмента.

УПП своими руками реализуется на основе КР118ПМ1 (фазовое регулирование) и силовой части на симисторах. Основной изюминкой устройства является его универсальность, ведь его можно подключить к любому электроинструменту. Оно не только легко монтируется, но и не требует предварительной настройки. В основном подключение системы к инструменту не является сложным и устанавливается в разрыв кабеля питания.

Особенности работы модуля УПП

При включении болгарки на КР118ПМ1 подается напряжение и на управляющем конденсаторе (С2) происходит плавный рост напряжения по мере роста заряда. Тиристоры, находящиеся в микросхеме, открываются постепенно с определенной задержкой. Симистор открывается с паузой, равной задержке тиристоров. Для каждого последующего периода напряжения происходит постепенное уменьшение задержки и инструмент плавно запускается.

Зависит время набора оборотов от емкости С2 (при 47 мк время запуска равно 2 секунды). Эта задержка является оптимальной, хотя ее можно менять путем увеличения емкости С2. После выключения углошлифовальной машинки (УШМ) происходит разряд конденсатора С2 благодаря резистору R1 (время разрядки примерно равно 3 секунды при 68к).

Эту схему для регулировки оборотов электродвигателя можно модернизировать путем замены R1 на переменный резистор. При изменении величины сопротивления переменного резистора меняется мощность электромотора. Резистор R2 выполняет функцию контроля величины силы тока, который протекает через вход симистора VS1 (желательно предусмотреть охлаждение вентилятором), являющийся управляющим. Конденсаторы С1 и С3 служат для защиты и управлением микросхемы.

Симистор подбирается со следующими характеристиками: напряжение прямое максимальное до 400–500 В и минимальный ток пропускания через переходы должен быть не менее 25 А. При изготовлении УПП по этой схеме запас по мощности может колебаться от 2 кВт до 5 кВт.

Таким образом, для увеличения срока службы инструментов и двигателей, необходимо производить их плавный запуск. Это связано с конструктивной особенностью электромоторов асинхронного и коллекторного типов. При запуске происходит стремительное потребление тока, из-за которого происходит износ электрической и механической частей. Использование УПП позволяет обезопасить электроинструмент, благодаря соблюдению правил техники безопасности. При модернизации инструмента возможна покупка уже готовых моделей, а также сборка простого и надежного универсального устройства, которое не только отличается, но и даже превосходит некоторые заводские УПП.

Устройства плавного пуска электродвигателей являются статическими электронными или электромеханическими устройствами, предназначенными для плавного ускорения и плавного замедления, а также для защиты трехфазных индукционных электродвигателей.

Устройства плавного пуска УПП осуществляют действия по снижению величины пускового тока и помогают осуществить согласование крутящего момента двигателя и момента нагрузки.

Принцип работы устройства плавного пуска

Управление напряжением, подаваемым на двигатель, осуществляется посредством изменения угла открытия тиристоров. В устройстве находятся два встречно-включенных тиристора, предназначенных для положительного и отрицательного полупериодов. Сила тока в третьей фазе, оставшейся без управления складывается из токов фаз под управлением.

После осуществления настройки, значение вращающего момента при пуске машины оптимизируется до предельно низкой величины пускового тока. Значение тока электродвигателя уменьшается параллельно значению установленного пускового напряжения на пуске. Величина пускового момента уменьшается в квадратичном отношении к напряжению.

Уровень напряжения осуществляет контроль пускового тока и момента двигателя при запуске и остановке двигателя.

Наличие в устройстве байпасных контактов, которые шунтируют тиристоры, способствует понижению тепловых потерь в тиристорах, а соответственно понижению нагрева всего устройства. Встроенная электронная дугогасительная система защищает контакты в случае появления повреждений в результате непредвиденных сбоев в работе, например, при прерывании подачи напряжения, возникновении вибрации или дефекте контактов.

Рис 1. Внешний вид устройства плавного пуска 3RW30

Рис 2. Внутренняя схема устройства управления плавным пуском 3RW30

Баланс полярности

Недостаток 2-фазного управления в устройстве плавного пуска асинхронного двигателя проявляется в появлении постоянного тока, вызванного фазовой отсечкой и наложением фазных токов, при которых возникает сильный акустический шум, выделяемый электродвигателем.

Применение метода «баланс полярности» значительно понижает влияние значений постоянного тока во время разгона двигателя, соответственно снижается акустическая характеристика запуска, достигается это благодаря балансированию полуволн различной полярности в процессе разгона двигателя.

Интерфейс устройства

Интерфейс устройства плавного пуска УПП «человек-машина» разрешает производить настройку параметров, существенно облегчая и упрощая осуществление процесса запуска и эксплуатации двигателя. Встроенная функция управления насосом предотвращает возникновение гидравлического удара.

Рис3. Интерфейс устройства плавного пуска

Рис. А.

Рис. Б. прикладной модуль AS-интерфейса

Рис. В.

Рис 4. Устройство плавного пуска электродвигателя — схема фидерной комбинации с AS-интерфейсом

Интерфейс состоит из двух дисплеев с сегментными индикаторами и ЖК-дисплеем, позволяющим обеспечить видимость на значительном расстоянии, включает в свой состав описание параметров и сообщений.

В возможности аппаратуры входит выбор режима программирования и языковые опции. Осуществляет копирование параметров из одного устройства в другое, увеличивая скорость программирования, повышая надежность оборудования и получая возможность корректирования и внесения идентичных параметров на одинаковых машинах.

Плавный пуск для однофазного двигателя

Устройство плавного пуска однофазного электродвигателя, применяемого в быту, активируется при подаче ~Uк выводам L1 и L2.

Рис 5. Схема лицевой панели устройства TSG предназначенного для однофазного двигателя

Происходит увеличение значение линейного напряжения в течение определенного отрезка времени до достижения его предельного значения. Выводы Т-2 и Т-3 постоянно запитаны от питающей сети. Время процесса регулируется регулятором, в диапазоне до 20 сек. С повышением параметров напряжения происходит увеличение вращающего момента. После окончания запуска, через шунтирующий контактор (байпас) происходит подключение двигателя от сети.

Рис. 6. Схема работы устройства плавного пуска TSG при положении регулятора момента вращения Моn =0, при котором начинается цикл плавного пуска

Устройство плавного пуска электродвигателя насоса

Устройство плавного пуска для насоса с использованием преобразователя частоты осуществляет следующие операции это:

  1. Осуществление плавного пуска и торможения насосного агрегата.
  2. Производство автоматического коммутирования в зависимости от показателей уровня и параметров давления жидкости.
  3. Защиту агрегата от «сухого хода», то есть без жидкости.
  4. Защита агрегата при критическом снижении параметров напряжения.
  5. Осуществление защитных действий от перенапряжения на входе преобразователя.
  6. Сигнализирует о включении, отключении агрегата, а также при аварии.
  7. Осуществляет местный обогрев.

Рис. 7. Устройство плавного пуска схема принципиальная, для автоматизации работы погружного насоса с поддержкой давления в полном автоматическом режиме

Подключение электродвигателя осуществляется от контактов U,V,W преобразующего частотного устройства. Пусковая кнопка SB2 вызывает срабатывание реле К1 через ее контактную группу происходит соединение вводов STF и PS частотного преобразователя, который производит плавный запуск электрического насоса, который осуществляется по заложенному программному обеспечению, включенному в настройку устройства.

Датчик определяющий давление ВР1 запитан от ввода преобразователя, делает возможной наличие обратной связи в цепи стабилизирующей давление. Работа этой системы происходит при обеспечении ПИД-регулятора. Потенциометр К1 или частотный преобразователь выполняют функцию по поддержанию заданных параметров давления. Насосный агрегата, при появлении «сухого» хода, должен отключаться для зашиты, в этом случае, контакты 7-8 в цепи катушки реле К3 замыкаются, отключение происходит при срабатывании датчика «сухого» хода подключенного от реле сопротивления А2 . Реле К2 осуществляет защитную функцию по отключению электродвигателя агрегата при аварии. При аварии происходит включение лампыНL1, лампа НL2 зажигается после срабатывания датчика реагирующего на понижение водяного уровня, на недопустимое значение.

Термореле ВК1 осуществляет включение подогрева шкафа управления контактором КМ1, электронагревателей ЕК1 и ЕК2. Защита устройства от тока короткого замыкания и перегруза производится автоматом QF1.

Высоковольтное устройство плавного пуска его отличительные особенности

Рис 8. Схема высоковольтного устройства плавного пуска

К отличительным особенностям относятся:

  1. Наличие оптоволоконного управления тиристорами.
  2. Управление на микропроцессорах.
  3. Способность к работе при повышенной температуре.
  4. Возможность задания различных алгоритмов и характеристик пуска и торможения для разных видов нагрузки.
  5. Способность к интеллектуальной защите.
  6. Возможность осуществления пуска при слабых источниках питания.
  7. Осуществление степени защиты от IP 00 доIP 65

Важно:при наладке устройства плавного пуска нужно чтобы установленное время разгона было больше физического времени разгона двигателя, иначе присутствует возможность получения повреждения устройства, так внутренние байпасные контакты замыкаются по истечении времени пуска. В том случае если не произошел разгон двигателя, может выйти из строя система байпасных контактов.

Важно:автоматический повторный пуск опасен не только повреждением устройства, но и может привести к смерти людей и тяжелому травматизму.

Команда запуск, обязана сбрасываться до команды сброса, так как при наличии команды запуска после команды сброса, автоматически выполняется повторный перезапуск. Особенно это касается защиты двигателя.

Для безопасности желательно присоединить выход общей ошибки в систему управления.

Рекомендация: нежелательность автоматического пуска, диктует необходимость присоединения дополнительных компонентов, например, устройства выпадения фазы или нагрузки, с цепями управляющего и главного тока.